- TYPES/NAMES OF ORGANIZATION/COUNTRIES OF ORIGIN
- ph-PHILIPPINE
- sg-SINGAPORE
- net-NETWORKING PROVIDERS
- mil-MILITARY
- uk-UNITED KINGDOM
- my-MALAYSIA
- nl-NETHERLANDS
- de-GERMANY
- fr-FRANCE
- com-COMMERCIAL
- cn-CHINA
- org-NON-PROFIT ORGANIZATION
- edu-EDUCATIONAL
- au-AUSTRALIA
- za-SOUTH AFRICA
Thursday, February 3, 2011
Tuesday, February 1, 2011
Home > CPU
CPU
- 0diggsdigg
Pronounced as separate letters it is the abbreviation for central processing unit. The CPU is the brains of the computer. Sometimes referred to simply as the central processor, but more commonly called processor, the CPU is where most calculations take place. In terms of computing power, the CPU is the most important element of a computer system.
On large machines, CPUs require one or more printed circuit boards. On personal computers and small workstations, the CPU is housed in a single chip called a microprocessor. Since the 1970's the microprocessor class of CPUs has almost completely overtaken all other CPU implementations.
The CPU itself is an internal component of the computer. Modern CPUs are small and square and contain multiple metallic connectors or pins on the underside. The CPU is inserted directly into a CPU socket, pin side down, on the motherboard. Each motherboard will support only a specific type or range of CPU so you must check the motherboard manufacturer's specifications before attempting to replace or upgrade a CPU. Modern CPUs also have an attached heat sink and small fan that go directly on top of the CPU to help dissipate heat.
ICT (information and communications technology - or technologies) is an umbrella term that includes any communication device or application, encompassing: radio, television, cellular phones, computer and network hardware and software, satellite systems and so on, as well as the various services and applications associated with them, such as videoconferencing and distance learning. ICTs are often spoken of in a particular context, such as ICTs in education, health care, or libraries. The term is somewhat more common outside of the United States.
Pronounced ramm, acronym for random access memory, a type of computer memory that can be accessed randomly; that is, any byte of memory can be accessed without touching the preceding bytes. RAM is the most common type of memory found in computers and other devices, such as printers
Random Access Memory (RAM) is the "working memory" in a computer. Additional RAM allows a computer to work with more information at the same time which can have a dramatic effect on total system performance.
RAM is Also Known As:
main memory, internal memory, primary storage, memory "stick", RAM "stick"
A CD-ROM (pronounced /ˌsiːˌdiːˈrɒm/, an acronym of "Compact Disc Read-only memory") is a pre-pressed compact disc that contains data accessible to, but not writable by, a computer for data storage and music playback. The 1985 “Yellow Book” standard developed by Sony and Philips adapted the format to hold any form of binary data.[2]
CD-ROMs are popularly used to distribute computer software, including games and multimedia applications, though any data can be stored (up to the capacity limit of a disc). Some CDs hold both computer data and audio with the latter capable of being played on a CD player, while data (such as software or digital video) is only usable on a computer (such as ISO 9660 format PC CD-ROMs). These are called enhanced CDs.
Although many people use lowercase letters in this acronym, proper presentation is in all capital letters with a hyphen between CD and ROM. At the time of the technology's introduction it had more capacity than computer hard drives common at the time. The reverse is now true, with hard drives far exceeding CDs, DVDs and Blu-ray, though some experimental descendants of it such as HVDs may have more space and faster data rates than today's biggest hard drive
CD-ROMs are popularly used to distribute computer software, including games and multimedia applications, though any data can be stored (up to the capacity limit of a disc). Some CDs hold both computer data and audio with the latter capable of being played on a CD player, while data (such as software or digital video) is only usable on a computer (such as ISO 9660 format PC CD-ROMs). These are called enhanced CDs.
Although many people use lowercase letters in this acronym, proper presentation is in all capital letters with a hyphen between CD and ROM. At the time of the technology's introduction it had more capacity than computer hard drives common at the time. The reverse is now true, with hard drives far exceeding CDs, DVDs and Blu-ray, though some experimental descendants of it such as HVDs may have more space and faster data rates than today's biggest hard drive
)Abbreviation of cathode-ray tube, the technology used in most televisions and computer display screens. A CRT works by moving an electron beam back and forth across the back of the screen. Each time the beam makes a pass across the screen, it lights up phosphor dots on the inside of the glass tube, thereby illuminating the active portions of the screen. By drawing many such lines from the top to the bottom of the screen, it creates an entire screenful of images.
Short for liquid crystal display, a type of display used in digital watches and many portable computers. LCD displays utilize two sheets of polarizing material with a liquid crystal solution between them. An electric current passed through the liquid causes the crystals to align so that light cannot pass through them. Each crystal, therefore, is like a shutter, either allowing light to pass through or blocking the light.
Monochrome LCD images usually appear as blue or dark gray images on top of a grayish-white background. Color LCD displays use two basic techniques for producing color: Passive matrix is the less expensive of the two technologies. The other technology, called thin film transistor (TFT) or active-matrix, produces color images that are as sharp as traditional CRT displays, but the technology is expensive. Recent passive-matrix displays using new CSTN and DSTN technologies produce sharp colors rivaling active-matrix displays.
Most LCD screens used in notebook computers are backlit, or transmissive, to make them easier to read.
Monochrome LCD images usually appear as blue or dark gray images on top of a grayish-white background. Color LCD displays use two basic techniques for producing color: Passive matrix is the less expensive of the two technologies. The other technology, called thin film transistor (TFT) or active-matrix, produces color images that are as sharp as traditional CRT displays, but the technology is expensive. Recent passive-matrix displays using new CSTN and DSTN technologies produce sharp colors rivaling active-matrix displays.
Most LCD screens used in notebook computers are backlit, or transmissive, to make them easier to read.
Short for liquid crystal display, a type of display used in digital watches and many portable computers. LCD displays utilize two sheets of polarizing material with a liquid crystal solution between them. An electric current passed through the liquid causes the crystals to align so that light cannot pass through them. Each crystal, therefore, is like a shutter, either allowing light to pass through or blocking the light.
Monochrome LCD images usually appear as blue or dark gray images on top of a grayish-white background. Color LCD displays use two basic techniques for producing color: Passive matrix is the less expensive of the two technologies. The other technology, called thin film transistor (TFT) or active-matrix, produces color images that are as sharp as traditional CRT displays, but the technology is expensive. Recent passive-matrix displays using new CSTN and DSTN technologies produce sharp colors rivaling active-matrix displays.
Most LCD screens used in notebook computers are backlit, or transmissive, to make them easier to read.
Monochrome LCD images usually appear as blue or dark gray images on top of a grayish-white background. Color LCD displays use two basic techniques for producing color: Passive matrix is the less expensive of the two technologies. The other technology, called thin film transistor (TFT) or active-matrix, produces color images that are as sharp as traditional CRT displays, but the technology is expensive. Recent passive-matrix displays using new CSTN and DSTN technologies produce sharp colors rivaling active-matrix displays.
Most LCD screens used in notebook computers are backlit, or transmissive, to make them easier to read.
The Advanced Research Projects Agency Network (ARPANET), was the world's first operational packet switching network and the core network of a set that came to compose the global Internet. The network was created by a small research team at the Massachusetts Institute of Technology and the Defense Advanced Research Projects Agency (DARPA) of the United States Department of Defense. The packet switching of the ARPANET was based on designs by Lawrence Roberts of the Lincoln Laboratory.[1]
Packet switching, today the dominant basis for data communications worldwide, was a new concept at the time of the conception of the ARPANET. Data communications had been based on the idea of circuit switching, as in the traditional telephone circuit, wherein a telephone call reserves a dedicated circuit for the duration of the communication session and communication is possible only between the two parties interconnected.
With packet switching, a data system could use one communications link to communicate with more than one machine by collecting data into datagrams and transmit these as packets onto the attached network link, whenever the link is not in use. Thus, not only could the link be shared, much as a single post box can be used to post letters to different destinations, but each packet could be routed independently of other packets.
Packet switching, today the dominant basis for data communications worldwide, was a new concept at the time of the conception of the ARPANET. Data communications had been based on the idea of circuit switching, as in the traditional telephone circuit, wherein a telephone call reserves a dedicated circuit for the duration of the communication session and communication is possible only between the two parties interconnected.
With packet switching, a data system could use one communications link to communicate with more than one machine by collecting data into datagrams and transmit these as packets onto the attached network link, whenever the link is not in use. Thus, not only could the link be shared, much as a single post box can be used to post letters to different destinations, but each packet could be routed independently of other packets.
Short for Universal Serial Bus, an external bus standard that supports data transfer rates of 12 Mbps. A single USB port can be used to connect up to 127 peripheral devices, such as mice, modems, and keyboards. USB also supports Plug-and-Play installation and hot plugging.
Starting in 1996, a few computer manufacturers started including USB support in their new machines. It wasn't until the release of the best-selling iMac in 1998 that USB became widespread. It is expected to completely replace serial and parallel ports.
Starting in 1996, a few computer manufacturers started including USB support in their new machines. It wasn't until the release of the best-selling iMac in 1998 that USB became widespread. It is expected to completely replace serial and parallel ports.
Monday, January 31, 2011
southern leyte hymn lyrics
Maoy gasa sa langit
Ang lalawigang Southern Leyte
Duyan siya sa mga bayani
Paglaum sa mga kawani Southern Leyte,
Southern Leyte Yuta namong minahal
Hinaut unta magmauswagun sa Ginoo,
Sa langit ikaw panggaun
Sa imung pangulo mahalon ka sa mga mulopyo
Ampingan ka Southern Leyte,
Southern Leyte Yuta namong minahal
Southern Leyte Southern Leyte
yuta na mong inhal....
An Internet Protocol address (IP address) is a numerical label assigned to each device (e.g., computer, printer) participating in a computer network that uses the Internet Protocol for communication.[1] An IP address serves two principal functions: host or network interface identification and location addressing. Its role has been characterized as follows: "A name indicates what we seek. An address indicates where it is. A route indicates how to get there."[2]
The designers of the Internet Protocol defined an IP address as a 32-bit number[1] and this system, known as Internet Protocol Version 4 (IPv4), is still in use today. However, due to the enormous growth of the Internet and the predicted depletion of available addresses, a new addressing system (IPv6), using 128 bits for the address, was developed in 1995,[3] standardized as RFC 2460 in 1998,[4] and is being deployed world-wide since the mid-2000s.
IP addresses are binary numbers, but they are usually stored in text files and displayed in human-readable notations, such as 172.16.254.1 (for IPv4), and 2001:db8:0:1234:0:567:8:1 (for IPv6).
The Internet Assigned Numbers Authority (IANA) manages the IP address space allocations globally and delegates five regional Internet registries (RIRs) to allocate IP address blocks to local Internet registries (Internet service providers) and other entities.
The designers of the Internet Protocol defined an IP address as a 32-bit number[1] and this system, known as Internet Protocol Version 4 (IPv4), is still in use today. However, due to the enormous growth of the Internet and the predicted depletion of available addresses, a new addressing system (IPv6), using 128 bits for the address, was developed in 1995,[3] standardized as RFC 2460 in 1998,[4] and is being deployed world-wide since the mid-2000s.
IP addresses are binary numbers, but they are usually stored in text files and displayed in human-readable notations, such as 172.16.254.1 (for IPv4), and 2001:db8:0:1234:0:567:8:1 (for IPv6).
The Internet Assigned Numbers Authority (IANA) manages the IP address space allocations globally and delegates five regional Internet registries (RIRs) to allocate IP address blocks to local Internet registries (Internet service providers) and other entities.
A URL (Uniform Resource Locator, previously Universal Resource Locator) - usually pronounced by sounding out each letter but, in some quarters, pronounced "Earl" - is the unique address for a file that is accessible on the Internet. A common way to get to a Web site is to enter the URL of its home page file in your Web browser's address line. However, any file within that Web site can also be specified with a URL. Such a file might be any Web (HTML) page other than the home page, an image file, or a program such as a common gateway interface application or Java applet. The URL contains the name of the protocol to be used to access the file resource, a domain name that identifies a specific computer on the Internet, and a pathname, a hierarchical description that specifies the location of a file in that computer.
On the Web (which uses the Hypertext Transfer Protocol, or HTTP), an examp
On the Web (which uses the Hypertext Transfer Protocol, or HTTP), an examp
1) In computer networks, bandwidth is often used as a synonym for data transfer rate - the amount of data that can be carried from one point to another in a given time period (usually a second). This kind of bandwidth is usually expressed in bits (of data) per second (bps). Occasionally, it's expressed as bytes per second (Bps). A modem that works at 57,600 bps hastwice the bandwidth of a modem that works at 28,800 bps. In general, a link with a high bandwidth is one that may be able to carry enough information to sustain the succession of images in a video presentation.
It should be remembered that a real communications path usually consists of a succession of links, each with its own bandwidth. If one of these is much slower than the rest, it is said to be a bandwidth bottleneck.
2) In electronic communication, bandwidth is the width of the range (or band) of frequencies that an electronic signal uses on a given transmission medium. In this usage, bandwidth is expressed in terms of the difference between the highest-frequency signal component and the lowest-frequency signal component. Since the frequency of a signal is measured in hertz (the number of cycles of change per second), a given bandwidth is the difference in hertz between the highest frequency the signal uses and the lowest frequency it uses. A typical voice signal has a bandwidth of approximately three kilohertz (3 kHz); an analog television (TV) broadcast video signal has a bandwidth of six megahertz (6 MHz) -- some 2,000 times as wide as the voice signal.
It should be remembered that a real communications path usually consists of a succession of links, each with its own bandwidth. If one of these is much slower than the rest, it is said to be a bandwidth bottleneck.
2) In electronic communication, bandwidth is the width of the range (or band) of frequencies that an electronic signal uses on a given transmission medium. In this usage, bandwidth is expressed in terms of the difference between the highest-frequency signal component and the lowest-frequency signal component. Since the frequency of a signal is measured in hertz (the number of cycles of change per second), a given bandwidth is the difference in hertz between the highest frequency the signal uses and the lowest frequency it uses. A typical voice signal has a bandwidth of approximately three kilohertz (3 kHz); an analog television (TV) broadcast video signal has a bandwidth of six megahertz (6 MHz) -- some 2,000 times as wide as the voice signal.
The Defense Advanced Research Projects Agency (DARPA) is an agency of the United States Department of Defense responsible for the development of new technology for use by the military. DARPA has been responsible for funding the development of many technologies which have had a major effect on the world, including computer networking, as well as NLS, which was both the first hypertext system, and an important precursor to the contemporary ubiquitous graphical user interface.
Its original name was simply Advanced Research Projects Agency (ARPA), but it was renamed to "DARPA" (for Defense) in March 1972, then renamed "ARPA" again in February 1993, and then renamed "DARPA" again in March 1996.
DARPA was established during 1958 (as ARPA) in response to the Soviet launching of Sputnik during 1957, with the mission of keeping U.S. military technology more sophisticated than that of the nation's potential enemies. From DARPA's own introduction,[2]
Its original name was simply Advanced Research Projects Agency (ARPA), but it was renamed to "DARPA" (for Defense) in March 1972, then renamed "ARPA" again in February 1993, and then renamed "DARPA" again in March 1996.
DARPA was established during 1958 (as ARPA) in response to the Soviet launching of Sputnik during 1957, with the mission of keeping U.S. military technology more sophisticated than that of the nation's potential enemies. From DARPA's own introduction,[2]
DARPA’s original mission, established in 1958, was to prevent technological surprise like the launch of Sputnik, which signaled that the Soviets had beaten the U.S. into space. The mission statement has evolved over time. Today, DARPA’s mission is still to prevent technological surprise to the US, but also to create technological surprise for its enemies.DARPA is independent from other more conventional military R&D and reports directly to senior Department of Defense management. DARPA has around 240 personnel (about 140 technical) directly managing a $3.2 billion budget. These figures are "on average" since DARPA focuses on short-term (two to four-year) projects run by small, purpose-built teams.
HTML (Hypertext Markup Language) is the set of markup symbols or codes inserted in a file intended for display on a World Wide Web browser page. The markup tells the Web browser how to display a Web page's words and images for the user. Each individual markup code is referred to as an element (but many people also refer to it as a tag). Some elements come in pairs that indicate when some display effect is to begin and when it is to end.
HTML is a formal Recommendation by the World Wide Web Consortium (W3C) and is generally adhered to by the major browsers, Microsoft's Internet Explorer and Netscape's Navigator, which also provide some additional non-standard codes. The current version of HTML is HTML 4.0. However, both Internet Explorer and Netscape implement some features differently and provide non-standard extensions. Web developers using the more advanced features of HTML 4 may have to design pages for both browsers and send out the appropriate version to a user. Significant features in HTML 4 are sometimes described in general as dynamic HTML. What is sometimes referred to as HTML 5 is an extensible form of HTML called Extensible Hypertext Markup Language (XHTML).
HTML is a formal Recommendation by the World Wide Web Consortium (W3C) and is generally adhered to by the major browsers, Microsoft's Internet Explorer and Netscape's Navigator, which also provide some additional non-standard codes. The current version of HTML is HTML 4.0. However, both Internet Explorer and Netscape implement some features differently and provide non-standard extensions. Web developers using the more advanced features of HTML 4 may have to design pages for both browsers and send out the appropriate version to a user. Significant features in HTML 4 are sometimes described in general as dynamic HTML. What is sometimes referred to as HTML 5 is an extensible form of HTML called Extensible Hypertext Markup Language (XHTML).
HTTP (Hypertext Transfer Protocol) is the set of rules for transferring files (text, graphic images, sound, video, and other multimedia files) on the World Wide Web. As soon as a Web user opens their Web browser, the user is indirectly making use of HTTP. HTTP is an application protocol that runs on top of the TCP/IP suite of protocols (the foundation protocols for the Internet)
Thursday, January 27, 2011
LUPANG HINIRANG
Bayang magiliw,
Perlas ng Silanganan,
Alab ng puso,
Sa dibdib mo'y buhay.
Lupang Hinirang,
Duyan ka ng magiting,
Sa manlulupig,
'Di ka pasisiil.
Sa dagat at bundok,
Sa simoy at sa langit mong bughaw,
May dilag ang tula
At awit sa paglayang minamahal.
Ang kislap ng watawat mo'y
Tagumpay na nagniningning,
Ang bituin at araw niya
Kailan pa ma'y di magdidilim.
Lupa ng araw,
ng luwalhati't pagsinta,
Buhay ay langit
sa piling mo;
Aming ligaya,
na 'pag may mang-aapi
Ang mamatay
nang dahil sa iyo.
Bayang magiliw,
Perlas ng Silanganan,
Alab ng puso,
Sa dibdib mo'y buhay.
Lupang Hinirang,
Duyan ka ng magiting,
Sa manlulupig,
'Di ka pasisiil.
Sa dagat at bundok,
Sa simoy at sa langit mong bughaw,
May dilag ang tula
At awit sa paglayang minamahal.
Ang kislap ng watawat mo'y
Tagumpay na nagniningning,
Ang bituin at araw niya
Kailan pa ma'y di magdidilim.
Lupa ng araw,
ng luwalhati't pagsinta,
Buhay ay langit
sa piling mo;
Aming ligaya,
na 'pag may mang-aapi
Ang mamatay
nang dahil sa iyo.
Subscribe to:
Posts (Atom)